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Abstract

This paper uses a numeraire-invariant cross section of currency carry trades to identify global risk factors
in the currency market. First, we examine whether the US dollar can play the role of a global risk factor,
and demonstrate that it can explain the returns of the invariant cross section only when the US interest
rate is relatively low. Second, we reconcile this data feature in a modified version of the model of Lustig,
Roussanov and Verdelhan (2014), where the sensitivities to one of its global factors depend on the US
interest rate. Third, we design an asset pricing test that is consistent with the implications of the modified
model, and evaluate with it a large set of candidate global risk factors, among those suggested in prior
studies. We find that only a few combinations of these factors are supported by the test, even marginally,
and conclude that global risks still present a challenge to the empirical research of the currency market.
Our results, however, highlight the role of the global equity market and the global financial cycle (Rey
(2015)) for understanding currency risks.
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1. Introduction

Recent empirical work has strived to identify and rationalize risk factors that can explain return cross

sections reflecting currency market risks, as for example in Christiansen, Ranaldo, and Söderlind (2011),

Lustig, Roussanov, and Verdelhan (2011), Lettau, Maggiori, and Weber (2014), Della Corte, Ramadorai,

and Sarno (2016), Colacito, Croce, Gavazzoni, and Ready (2018), among others. Given the inherently

global nature of the currency market, such factors are often viewed as global risk factors, i.e., representing

risks to which all economies are exposed.1 The global risk interpretations also agree with the use in asset

pricing tests of currency portfolios where country-specific risks are presumably diversified.

Yet, demonstrating empirically the global nature of a risk factor in the currency market is not straight-

forward. In particular, if a factor explains well the returns of certain test assets or portfolios when these are

expressed in some numeraire currency, but not in others, it may not be a global risk factor; the analysis of

risk pricing from multiple currency perspectives is not trivial, and prior studies have often focused only on

the US perspective. Addressing the impact of the choice of numeraire currency, Verdelhan (2017, Section

4.1) reports results obtained with returns in several currency denominations to demonstrate broad consis-

tency; still, this approach involves burdensome replications of tests and leaves open the question of how to

compare statistically the results obtained in different base currencies. Hassan and Mano (2017, Section 3.3)

suggest an answer to this question in one specific situation, illustrating the relevance of the issue. Aloosh

and Bekaert (2017, Section V.1) discuss some statistical pitfalls in tests with currency returns in different

denominations, and propose currency market factors that aggregate several currency perspectives.

This paper offers a new approach for identifying global risk factors in the currency market. First, we

construct a novel cross section of test assets which have largely the same returns from the perspective of

any currency; such numeraire-invariant test assets represent all perspectives, circumventing the need to

consider in turn returns in all possible denominations. While such test assets can be constructed in many

1Global risks require compensation from the perspective of all investors, regardless of their home currency, as, for example,
the global equity volatility risk in Lustig et al. (2011). Other examples are the global currency volatility risk in Menkhoff,
Sarno, Schmeling, and Schrimpf (2012); global imbalance risk in Della Corte, Riddiough, and Sarno (2016); global macro risk in
Filippou and Taylor (2017); global growth news risk in Colacito et al. (2018).
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ways, we focus specifically on a cross section of carry trades, which have been extensively studied in the

currency literature. The carry cross section is described in Section 2, and the robustness of our findings to

the carry return patterns studied in Maurer, Tô, and Tran (2018) is established in the Appendix.

Second, we rely on a version of the model of Lustig et al. (2014) (the LRV model) to impose discipline

on the search for global risk factors and provide guidance for their economic interpretation. We design an

asset pricing test that reflects the predictions of this model version; the test accepts candidate factors if they

meet standard statistical criteria and are consistent with the key model implications.

The LRV model incorporates global risk factors and offers in a parameterized form a currency cross

section, facilitating the construction of realistic carry trades. Besides, being of reduced form, it does not

pre-specify the risk factors, and we exploit this flexibility in our search. However, the model does not

reproduce certain observed features of the invariant cross section; to reconcile it with the data, we modify

the model, while preserving consistency with its original calibration.

The suggested model modification is motivated by our inquiry into the role of the US dollar (the USD)

for understanding carry trade returns, which is still a debated topic. We find that the average returns of our

carry trades are highly correlated with the betas of these trades with respect to the dollar factor (DOL) of

Lustig et al. (2011), indicating that dollar risk is priced in our carry trade cross section; this data feature

stems only from the subsample where the US interest rate is relatively low, which is a new insight. Section 3

shows, heuristically and with simulations, that the LRV model can generate this trait if the dispersion in

the sensitivities of different economies to one of its global risk factors depends on the US interest rate.

Confirming such a model modification from a different angle, we show that it also allows to reproduce the

sharp difference between the static and dynamic components of the carry trade, as studied in Hassan and

Mano (2017), which is observed in the data, but only when the US interest rate is relatively low.

We search for factors that are consistent with the modified LRV model among a large set of variables

that have been used in prior studies, and represent equity and bond market risks and real activity, as well

as different dimensions of uncertainty. While our pricing tests identify several that could be viable global
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risk factors in the currency market, these variables still can meet all the requirements imposed by the

model, which leads us to conclude that the global risks in the currency market still pose a challenge for the

empirical research. The modified LRV model, combined with the invariant cross section, raises the bar for

risk factors, and prior empirical results on global risks in the currency market may need to be re-visited.

At the same time, our tests reveal a unique role of the global equity market variable, which alone

qualifies to have sensitivities with time-varying dispersion, implying that standard systematic risks may be

more relevant for the currency market that typically assumed. We also link the findings from our tests to the

Global financial cycle, as in Passari and Rey (2015) and Miranda-Agrippino and Rey (2017); the "boom"

regime of this cycle coincides with the periods of relatively high US interest rate, which indicates that the

currency market reflects a specific counter-cyclical dispersion in global risk sensitivities.

This paper builds on Lustig et al. (2014), similar to Brusa, Ramadorai, and Verdelhan (2015), Mueller,

Stathopoulos, and Vedolin (2017), Verdelhan (2017) and Lustig, Stathopoulos, and Verdelhan (2018), who

have explored various extensions of the LRV model. Our version of the model asserts further the link

between asymmetric exposure to global risk and carry trade profitability, which has been emphasized in

Lustig et al. (2011). Besides, we examine, as done in Verdelhan (2017), the pricing ability of a dollar

factor, and use the average forward differential (AFD) of the USD as a key conditioning variable.

On the other hand, we depart from the above studies in several ways. First, instead of long-only

currency portfolios, we employ an alternative set of numeraire-invariant long-short trades that are better

suited for detecting global risks (Section 2.1 offers a comparison). Second, we demonstrate the dollar’s

pricing ability in a cross section of carry trades, instead of dollar beta-sorted portfolios, which implies that

the separation between dollar and carry risks is not as sharp as previously assumed. Third, we show that the

dollar’s pricing ability is built mechanically into the modified LRV model, hence the dollar factor (DOL)

may not represent a separate source of global risk, in this framework; we search for non-currency market

variables that can explain currency market risks. Fourth, we treat the AFD of the USD as a key conditioning

variable affecting all economies, and not as an indicator of the differences between the economic conditions
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of the US and the remaining economies, which allows the modified LRV model to capture better the

profitability of the Dollar carry trade of Lustig et al. (2014).2 Fifth, while the global risk factors in the

LRV model are only broadly characterized in Lustig et al. (2014), we aim to identify specific variables that

can play the role of such factors; furthermore, our estimations imply that economies exhibit persistent (and

possibly counter-cyclical) differences in their exposure to standard systematic risks like the global equity

market risk, whereas their exposure to uncertainty-related variables tends to be similar on average.

2. Carry trade cross section

Though the returns of any currency trade must ultimately be expressed in some specific currency, the

analysis of currency market risks, and of global risks in particular, does not have to be restrained by the

choice of such a (numeraire) currency, as one can easily construct currency trades with largely the same

returns when these are expressed in any currency. This section first points briefly to some issues related to

the use of numeraire non-invariant test assets in asset pricing tests. Then it describes the particular cross

section of invariant trades employed in this paper.

2.1. Non-invariant test assets

We consider here the interest rate sorted currency portfolios as in Lustig et al. (2011), with monthly

data available at Verdelhan’s website ("All countries" version, without transaction costs), which we extend

till 11/2016. The six portfolios correspond to long positions in all other currencies against the USD; when

expressed in different currencies, the returns of these long-only portfolios are not highly correlated, because

when re-denominating such a return, one adds, approximately, the change in the exchange rate between the

two base currencies, which can be of similar magnitude as the return itself.

Table 1 shows results from replicating the test of a two-factor model with the DOL (average of the

six portfolio returns) and HML (return difference between the portfolios with highest and lowest forward

2Note that this profitability cannot be explained with the differences between the marginal utilities of US and non-US investors,
as previously argued, because Dollar carry is numeraire-invariant and, therefore gives US and non-US investors, at each point in
time, largely the same returns, in their own currencies.
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differentials) factors on the original six portfolios, and on the same portfolios re-denominated in each of

the remaining G-10 currencies. Each column in the table refers to the base currency displayed in the first

row, and P1 to P6 denote the six portfolios.3 The table shows the average returns, intercepts (alphas) and

slopes (betas) from time-series regressions of the portfolio returns on the two factors, and the corresponding

R2’s. The differences between the columns of the table are very notable, with respect both to the signs and

magnitudes of the estimates, and their statistical significance. The reported R2 also vary widely, averaging

above 80% for the USD perspective, but below 10% for the GBP perspective. These disparities pose a

non-trivial challenge for the study of the global nature of the risks reflected in the two factors.

We recognize that some patterns in the table can be rationalized. For example, the βDOL estimates

are typically negative for the non-USD perspectives, as the respective portfolios are long the USD, unlike

the DOL factor; similarly, the βHML estimates are negative (positive) for the high (low)-yield currency

perspectives, as the respective currencies are typically held long (short) in the HML factor. Further, the

differences among the numbers on each row in the first four panels of the table are fairly stable across the

six rows in a panel, because at each point in time re-denomination amounts, approximately, to adding the

same number to the return of each portfolio, as mentioned above. Another example is the large R2 for the

USD perspective, which can be naturally attributed to the DOL factor representing the same perspective.

While potentially informative, however, the search for such patterns would complicate significantly the

analysis, and this motivates our alternative approach based on numeraire-invariant test assets.

Given our main focus on global risks, the last two rows in Table 1 are of particular interest. They

show the prices of risk (lambdas) for the two factors, with standard errors estimated via GMM (see also

Appendix D), and again for each currency perspective. The estimates of λHML are typically statistically

significant and thus consistent with the claim that HML can be seen as a global risk factor in the currency

market, although the two exceptions (the AUD and JPY perspectives) may pose a statistical challenge to

3The G-10 currencies are the New Zealand dollar (NZD), Australian dollar (AUD), British pound (GBP), Norwegian krone
(NOK), Swedish krona (SEK), Canadian dollar (CAD), Euro (EUR), Swiss franc (CHF) and Japanese yen (JPY), whereby the
German mark is used (DEM) prior to 1999 instead of the Euro, and our sample period is 12/1984 to 11/2016. The data source is
Barclays Bank, via Datastream.
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this claim. On the other hand, the estimates of λDOL vary widely, being large and statistically significant

for the AUD, CAD and JPY perspectives, and do not warrant an unambiguous conclusion.

For a further clarification, we repeat the same tests using the average forward differential (AFD) of the

USD as a conditioning variable, following Lustig et al. (2014) and Verdelhan (2017). We report separately

the prices of risk (lambdas) for the subsamples where the AFD is negative (first two lines in the table insert

below) or positive (the next two lines):

NZD AUD GBP NOK SEK CAD USD EUR CHF JPY

λDOL -4.93 2.96 -1.27 -0.09 -3.71 -0.49 -1.69 -0.16 0.42 -2.56

λHML 8.91** 4.89 10.40** 10.19** 11.02** 10.08** 10.23** 10.27** 10.04** 11.10**

λDOL 13.86** 14.01** 0.76 1.16 -0.78 9.07** 4.35** 1.85 4.54* 10.49**

λHML 6.57* 3.34 4.47** 5.26** 5.23** 5.33** 5.71** 6.07** 6.24** 1.89

Whereas the estimates of λHML remain mostly significant in each of the two AFD regimes, there is a clear

distinction with respect to the λDOL estimates: they are small and never significant when AFD < 0, but

are typically much larger in magnitude and more often significant when AFD > 0 (including that for the

USD perspective). This distinction highlights a possible link between carry trades, dollar risk and the AFD

regimes, which is explored further in this paper.

Overall, non-invariant test assets, as the above six portfolios, may not be suitable for the study of global

risks in the currency market. The invariant test assets considered next present an alternative which, among

other features, avoids the analysis of a host of different currency perspectives, which may raise non-trivial

statistical issues.

2.2. Cross section of invariant carry trades

Unlike the interest rate sorted portfolios which represent long-only positions against certain currency,

the numeraire-invariant test assets that we consider are long-short trades, further discussed in Appendix A.

The invariance follows from the fact that, roughly speaking, when re-denominating the return of such an

asset, the change due to the long side of the trade is offset by the change due to its short side. While, in
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principle, such test assets can be constructed in many ways, we focus on a cross section of carry trades,

which have been extensively studied in the currency literature and offer modeling advantages.

The carry trades in our invariant cross section are constructed from the G-10 currencies. While bid

and ask quotes are also available, it has been argued that they likely overestimate actual transaction costs

(e.g., Lyons (2001)); we ignore these costs, which helps maintain the invariance. Otherwise, the trade

construction is standard, following prior carry research and practice.4

To ensure numeraire invariance, the trades can include the USD, so when the USD is among the three

highest- or lowest-yielding currencies, the position in it has a guaranteed zero return from the USD per-

spective. However, the return of the USD position is non-zero from all other perspectives. Identically zero

returns in the numeraire currency are an inherent feature of trades with numeraire-invariant returns, and

investable indexes like those offered, for example, by Deutsche Bank share this invariance feature.

Specifically, we consider the cross section of all trades that use all possible combinations of eight

out of the ten G-10 currencies; the total number of these trades is 45 and further details are provided in

Appendix B. While one can similarly construct smaller or larger invariant cross sections, we have verified

that if nine currencies are used for each trade (hence the cross section has a total of 10 trades), the returns

of these trades are highly correlated. On the other hand, if seven or fewer currencies are used in each trade,

then the number of trades in the cross section grows quickly, while the length of our return time-series

remains fixed. Nevertheless, all three cross sections can reproduce the relation between carry returns and

the dollar factor that plays a key role in this paper, as shown in the next section.

2.3. Average returns and DOL betas in the carry cross section

In a first application of the invariant carry trades, we revisit the ability of the DOL factor to explain

the returns in this cross section, and hence its ability to serve as a global risk factor; recall that no clear

4At the end of each month we sort the currencies in each trade according to their forward differentials. Then we go long (short)
the top (bottom) three currencies in the ranking, with equal weights, and drop from the trade the currencies in the middle, as in
the HML factor of Lustig et al. (2011) and various investable currency indexes. As in Burnside et al. (2011) we assume that at the
beginning of the trade the three long positions sum to half a dollar in value, as do the three short positions, which implies that the
payoff in each period is generated with the same investment of one dollar. All trades are re-balanced at the end of each month.
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conclusion in this respect could be made when using the interest rate sorted portfolios in Section 2.1.

For simplicity and easier mapping into the LRV model in the next section, we examine the DOL factor

alone, and not together with HML - since the correlation between DOL and HML is relatively low, this

simplification does not affect much the conclusions. Besides, we define from now on DOL to be the

return of an equally weighted portfolio of long positions in all G-10 currencies against the USD, but verify

that using the original DOL factor yields very similar results. As previously, we consider both the full

sample and the two subsamples where the AFD of the USD is positive or negative, respectively, with one

clarification:

[Figure 1 about here.]

Figure 1 plots the time series of the AFD in two versions - actual and a three-month moving average,

which removes several sharp spikes and reveals clearly that the relatively high US interest rates, and hence

negative AFD are concentrated in two episodes during 1995-2001 and then 2005-2007 (in total about

30% of the sample). Throughout the paper, we use the smoothed version, which highlights the persistent,

regime-like nature of the AFD, but check that our main results are robust to this choice (see Appendix E).5

We also show robustness results for a smaller cross section of ten trades, each using nine of the G-10

currencies, and a larger cross section of 120 trades, each using only seven of these currencies. The results

are from univariate regressions (with a constant) of carry trade returns on DOL, which provide useful

intuition; results from formal asset pricing tests are presented in Section 4.

The table insert below first shows, for each set of carry trades, the correlation between average returns

and betas, then the 5-th and 95-th percentiles of the respective beta distribution, and, in parentheses, the

number of betas that are significant at the 5% confidence level, all obtained in estimations in our full

data sample (1985-2016). The remaining columns show the same statistics, estimated solely over the

subsamples when the AFD is negative or positive (i.e., the US interest rate is relatively high or low).

5Prior studies have pointed out that the standard currency data sets may contain a few questionable forward quotes, and Hassan
and Mano (2017) and Koijen, Moskowitz, Pedersen, and Vrugt (2018) have suggested cleaning procedures to address possible
data issues. Using a moving average can be seen as an alternative partial remedy which emphasizes the regime feature.
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full AFD < 0 AFD > 0
(high US int. rate) (low US int. rate)

trades corr. β5−th β95−th sign. corr. β5−th β95−th sign. corr. β5−th β95−th sign.

45 0.75 0.07 0.24 (45) 0.05 -0.28 -0.11 (38) 0.73 0.15 0.33 (45)

10 0.80 0.10 0.22 (10) 0.12 -0.27 -0.13 (10) 0.75 0.17 0.33 (10)

120 0.66 0.03 0.25 (105) -0.07 -0.30 -0.06 (90) 0.69 0.10 0.35 (120)

Over the full sample period, the correlation between betas and average returns is between 66 and 80%,

and the betas are all positive and mostly statistically significant. The pattern is almost identical in the

subsample when the AFD is positive, with a somewhat smaller variation in the betas. In contrast, when the

AFD is negative the correlation is close to zero, and all betas are negative, and some are not significant,

confirming our result obtained with the interest rate sorted portfolios. Therefore, DOL has explanatory

power for our return cross section, stemming entirely from the longer subsample with positive AFD.6

3. Global risks and carry trades in the LRV model

Any asset pricing test on an invariant cross section can be informative about global risks in the currency

market, which is the main subject of this paper, and one approach would be to simply test a large number

of candidate factors and then seek possible interpretations. On the other hand, one could develop a model

that explicitly postulates the global factor or factors, and then demonstrate consistency with an invariant

cross section. This paper takes a middle road and searches among a number of factors, guided by the

implications of a model that reflects the pricing ability of DOL for the invariant carry cross section.

We adopt the model of Lustig et al. (2014), which is suitable for our study for several reasons. First,

the LRV model provides in a parameterized form a currency cross section, allowing to build realistic carry

trades. Second, it features two global risk factors, consistent with the specific time-varying relation between

dollar and carry risks that we find in the data, which hints that different factors determine carry returns over

6The dominant role of the subsample with low US interest rates can also be seen if instead of DOL one uses Dollar carry,
which trades again all currencies against the USD with equal weights, but when the AFD is negative (i.e., the US interest rate is
relatively high), takes short, not long position in these currencies. In this case we obtain almost identical results for the full sample
(with respective correlations of 63, 65 and 59%) and beta percentiles of about 0.15 and 0.30 in each of the three cases.
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the two AFD regimes. Third, its reduced form offers the flexibility to search among a large set of candidate

global risk factors, while the inherent distinction among its factors can inform the economic interpretation

of the test results. Fourth, the relation between DOL and carry returns can be conveniently formalized

within the LRV model; we exploit this feature to suggest a modification that better reconciles the model

with the data, and then design an asset pricing test that reflects the implications of the modified model.

Explicitly targeting data features related to the USD as discussed in Section 2.3 is also justified by the

prior evidence on the global role of the USD, as presented, from different angles, in Adrian, Etula, and

Shin (2015), Rey (2015) and Passari and Rey (2015) among others; Shin (2016) argues that in the recent

years the USD has replaced the VIX as a global measure of risk appetite. Linking our tests to the USD is

desirable, but also presents an additional requirement, thus raising the bar for alternative models or factors.

3.1. The LRV model

The LRV model adapts the affine framework of term structure models of interest rates to the currency

market, in the spirit of Backus, Foresi, and Telmer (2001). In the model, markets are complete, currency

returns are driven by real variables, and inflation risk is not priced. The model equations, following exactly

the notation in Lustig et al. (2014) are reproduced below. Superscripts denote variables for different

currencies/economies, except for the respective US variables which have no superscript. The log pricing

kernel mi of economy i (and similar for the US) is:
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where spot exchange rate changes are denoted ∆si
t+1, and exchange rates are expressed as foreign currency

units per one USD. All constant parameters are positive and χ < 1
2(γ+ κ). It is also assumed that the

parameter δ for the US takes the average value of the δi’s in the sample. If an over-bar denotes averages

across all currencies except for the USD, AFDt = rt − rt = (χ− 1
2(γ+κ))(zt − zt); if N is large enough,

zt ≈ θ and the sign of the AFD depends mostly on zt . While the above relations refer to real variables,

because inflation risk is not priced and all economies share the same expected inflation rates we follow

Brusa et al. (2015) and treat them throughout as applying to nominal variables (see also Mueller et al.

(2017, Section 5.1)).

Can the LRV model reproduce the patterns in the betas of our carry trades with respect to DOL and

their correlation with the average returns of these trades, as observed in the data? Some heuristic arguments

pointing to a negative answer to this question are provided in Appendix C. Here we note that the model

gives no special role to the AFD, and hence is unlikely to generate a sharp difference in the correlations

between DOL betas and average carry returns in the two AFD regimes.

To verify this intuition, we simulate the model using the parameters in Table 5 in Lustig et al. (2014),

as also reproduced in the note to our Table 2. We do not, however, include inflation in the simulation, and

we set the parameter α to match a nominal average interest rate, as in Brusa et al. (2015) (this parameter is

cancelled in all expressions involving carry trade returns and DOL, and does not impact our conclusions).

We simulate 1000 sets of 11 interest rate and 11 exchange rate series, as per equations (2) and (3),

assuming that the USD has the middle value of the δi’s. The first 200 simulated values in each series are

discarded to reduce the impact of initial values, and the next 400 are retained, matching the length of our

actual series. From each set we construct a cross section of 55 carry trades, with all possible combinations

of nine out of the 11 simulated currencies, as well as a DOL factor and the corresponding AFD series. The

carry trades go long (short) the three currencies with the highest (lowest) interest rate.

The table insert below reports averages from the 1000 simulations, showing that the model does not

reproduce well the correlations between DOL betas and average carry returns, as observed in the data. In
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fact, while only 1% of the simulated correlations in the full sample exceed 0.72, this correlation is 0.75 in

the data; similarly, when AFD > 0 the first percentile of the simulated correlations is 0.69, in contrast to

a correlation of 0.73 in the data. This model feature remains intact if we keep the same parameters, and

assume that not the middle value, but some of the higher possible values of the δi’s is given to the US,

thereby deviating from the assumptions of the original model calibration.

full AFD < 0 AFD > 0

corr β5−th β95−th sign. corr β5−th β95−th sign. corr β5−th β95−th sign.

0.091 -0.02 0.05 (24.5) 0.042 -0.27 -0.14 (53.1) 0.073 0.14 0.28 (53.7)

Further departure from the data can be seen with respect to the model-based DOL betas in the full

sample, which are now close to zero and significant only in half of the cases (on average 24.5 out of 55).

3.2. Modifying the LRV model

To accommodate the findings from the carry cross section, we seek a model which delivers: (i) high

positive correlation between average carry returns and DOL betas over the full sample and when AFD > 0,

(ii) positive DOL betas over the full sample and when AFD > 0, (iii) correlation close to zero and negative

DOL betas when AFD < 0. It would be also desirable for the model to generate a relatively high Sharpe

ratio of the Dollar carry trade, which remained an issue for the original LRV model.7

We suggest that these features can be reconciled with the model if we introduce time-varying dispersion

in the parameters δi (deltas) that define the sensitivity of different pricing kernels to one of the global fac-

tors in the LRV model. We posit that the dispersion is high (low) when the AFD of the USD is positive

(negative), and denote by LRVd the model version with this feature; "d" stands for delta dispersion.

The suggested modification is prompted by the asymmetric results for the pricing ability of the DOL

factor, obtained both with the interest rate sorted portfolios and the invariant carry cross section: in both

7Section 5.5. of Lustig et al. (2014) points out that in their data sample this trade is highly profitable, with a Sharpe ratio close
to twice that of the Standard carry trade, whereas simulations from their calibrated model generate a much lower Sharpe ratio for
Dollar carry, about half of that for the simulated Standard carry. See also Mueller et al. (2017, Section 5.5) for a similar finding in
the context of their own model.
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cases the correlation between DOL betas and average returns is much weaker in one of the AFD regimes,

i.e., a risk reflected in DOL tends to get a much smaller compensation in average returns in this regime.

As per equation (3), expected currency returns have two components: 1
2(γ+κ)(zt − zi

t) and 1
2(δ− δi)zw

t ,

each corresponding to one of the global risk factors, and hence the desired asymmetry could be generated

if one of these components is reduced in magnitude in one of the AFD regimes. A regime-dependent

dispersion in the δi parameters presents one possible way to achieve this effect, while further emphasizing

the heterogeneity across economies reflected in the δi’s, which is a feature of the LRV model.

Recall also that Lustig et al. (2014, Section 6) argue that the AFD of the USD is counter-cyclical,

and so the suggested model change can be seen as introducing counter-cyclical dispersion in deltas. Since

the deltas are also components of factor loadings of the currency returns in equation (3), their dispersion

can be mapped to dispersion among the betas with respect to one of the global factors; if confirmed in the

data, the modified model LRVd can then be linked to a body of literature which has conjectured that the

cross-sectional dispersion of market betas and/or other key variables is counter-cyclical.

To demonstrate intuitively the relevance of the suggested model change, we first write down the ex-

pressions for DOL and carry returns in the LRVd model, giving a time subscript to the deltas (except for

the middle one) and setting the parameter γ equal to zero, to emphasize the global factors and main effects:

DOLt+1 =
κ

2
(zt − zi

t)+

(√
δ−
√

δi
t

)√
zw

t uw
t+1 +

√
κ

(
√

zt −
√

zi
t

)
ug

t+1 (4)

rxcarry
t+1 = − δ̃i

t

2
zw

t −
κ

2
z̃i

t −
√̃

δi
t

√
zw

t uw
t+1−

√
κ

√̃
zi

tu
g
t+1, (5)

where tilde (˜) denotes weighted average across all currencies in the sample, possibly including the USD,

where the weights are those given to individual currencies in a carry trade. All carry trades are symmetric,

with three long and three short positions with equal weights, hence the sum of the weights denoted by a

tilde equals zero (whereas the sum of the weights denoted by an over-bar equals one).8

8Note that the expression for a carry trade return does not have explicitly US variables (i.e., without superscript), since these
cancel out due to the equal weights of the long and short positions. At the same time, our cross section includes symmetric trades
constructed from various subsets of the G-10 currencies. many of these subsets include the USD and in the respective carry trades
the weight of the USD, like the weight of any other currency, is determined by its relative interest rate or forward differential.
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The covariance between DOL and carry returns is:

COV rxcarry,DOL = −κ2

4
E[(zt − zi

t)z̃i
t ]−E

[(√
δ−
√

δi
t

)√̃
δi

tz
w
t

]
−κE

[(
√

zt −
√

zi
t

)√̃
zi

t

]

≈ − κ2N
4(N−1)

E[zt z̃i
t ]−E

[(√
δ−
√

δi
t

)√̃
δi

t

]
θ

w− κN
N−1

E

[
√

zt

√̃
zi

t

]
, (6)

where E[.] denotes unconditional expectation, for proper comparison with our findings in the data. To

obtain the second (approximate) equality, we rewrite:

zt − zi
t =

N
N−1

zt − zi
t , where zi

t =
(
∑zi

t + zt
)
/(N−1), (7)

and note that zi
t includes zt and the zi

t’s all with positive sign, while z̃i
t has an equal number of them with

positive and negative signs. Given the assumption δ = δi
t , we also have

√
δ−
√

δi
t > 0.

When delta dispersion is high, the difference in the deltas is the dominant component of the interest

rate differentials; the high-delta currencies then tend to have low interest rates and are shorted in the carry

trade, while the low-delta currencies have high interest rates and are held long. Due to this effect,
√̃

δi
t is

negative and large in magnitude when AFD > 0; hence, the second term in (6) contributes to a positive

covariance between DOL and the carry return, and, so, to a positive DOL beta. A positive correlation

between these betas and the average carry returns now follows, due to the − δ̃i
t

2 zw
t term in (5), reconciling

the model and the data when AFD > 0. Note that the first and third terms in (6) will have small impact in

this AFD regime, because zt is uncorrelated with the zi
t’s and will more rarely enter z̃i

t and
√̃

zi
t , which will

be dominated by the currencies corresponding to the highest and lowest deltas.

When AFD < 0, the deltas are compressed and interest rate differentials are dominated by the terms

with zt and zi
t . When the USD enters the carry trades, it is held long, as the US interest rate is relatively

high in this AFD regime. Therefore, zt will tend to have positive weight in z̃i
t , and the first and third terms

in (6) will generate negative covariance and negative DOL beta, as observed in the data for this regime.

With small delta dispersion,
√

δ−
√

δi
t is small, and so is the relative importance of the second term in (6).

Note however, that in this case DOL beta will be negative due to zt , but not the remaining zi
t’s in z̃i

t .
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At the same time, the average carry return depends on the entire
√̃

zi
t term, as seen in (5). Therefore, the

LRVd model does not predict a strong link between DOL betas and average returns, consistent with the

small correlation between betas and average returns observed in the data when AFD < 0. The suggested

model change can thus generate realistic patterns in correlations and betas in each of the two AFD regimes.

The conjectured time-varying cross-sectional dispersion of deltas, combined with a counter-cyclical

AFD point to links with a different body of literature that can be explored. For example, Baele and Londono

(2013) show that the cross-sectional dispersion on industry betas is larger during recessions, consistent

with the model predictions in Gomes, Kogan, and Zhang (2003) and earlier observations by Chan and

Chen (1988). The model in Frazzini and Pedersen (2013) predicts compression of market betas during

times of high funding liquidity risk, or when credit is more likely to be rationed. In a similar vein, evidence

for counter-cyclical cross-sectional dispersion has been presented in Bloom (2009) for various firm-level

variables, Kehrig (2011) for total factor productivity, Christiano and Ikeda (2013) for banks’ equity returns,

and Dou (2016) for sales and investment. Unlike these studies which refer to the US context, our analysis

based on invariant carry trades and the LRV model with global factors suggests that a similar pattern

characterizes the global currency market as well, adding to the evidence in Mueller et al. (2017) on the

counter-cyclical dispersion in currency correlations.

3.3. Simulating the LRVd model

Table 2 reports results from simulations of the modified model LRVd , in three different versions V1,

V2 and V3, together with the original LRV model. Time-varying delta dispersion is introduced by defining:

δ
i
t = δ+νt(δ

i−δ), with νt ≤ 1 when AFD < 0, and νt > 1 otherwise (8)

When AFD > 0, we set in all versions νt = 2.5, which is close to the upper bound on νt that ensures that

all deltas stay positive in the high-dispersion regime. When AFD < 0, the three versions have νt equal to

0, 0.5, and 1, respectively. A value of 1 implies no change in the deltas compared to the original model,

while a value of zero results in all deltas being the same in this AFD regime (extreme delta compression).
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To highlight qualitative effects, we illustrate the performance of the LRVd with a small set of parameter

values; we do not aim for a full calibration of the model, but use it to provide guidance in our search for

global risk factors. We also consider different values for the γ and κ parameters. In equations (4) and (5)

γ was set to zero, allowing to focus on the global factors. Now it takes the values of zero (for V1 and V2)

and 0.01 (for V3), both smaller than the original value of 0.04. We also reduce κ by 5% when AFD < 0

and increase it by 5% otherwise for V2 and V3.

The top panel in Table 2 reports the averages across 1000 simulations of the annualized means and

standard deviations of interest rates and exchange rates, as well as the respective average correlations, for

each of the four model versions (original and three modified). As previously, each simulation generates

11 series of interest rates and exchange rates, with which we construct the long-only DOL factor, as well

as a Dollar carry (DC) and Standard carry (SC) trades, the latter using the currencies with three highest

and three lowest interest rates. The top panel of the table also reports average Sharpe ratios for the DC

and SC trades. The bottom panel shows average DOL beta percentiles and correlations between betas and

average carry returns, using simulated cross sections of all carry trades constructed from nine out of 11

currencies (a total of 55 trades). As done before, results are shown both for the full sample and the two

AFD subsamples. For completeness, the corresponding quantities from the 45 carry trades in our sample

are shown in the "data" row.

First, V1, which only introduces (extreme) delta dispersion, reproduces well some of the interest rate

and currency statistics, but fails with respect to the correlation between interest rates. It does, however,

generate higher Sharpe ratio for Dollar carry than for Standard carry (0.43 versus 0.36). While still below

the one observed in Lustig et al. (2014), this difference is closer to that in our data sample, where both

Sharpe ratios are close to 0.50. Importantly, the V1 version matches well all three correlations between

betas and average returns, as well as all beta signs and the magnitude of betas in the full sample, even

though the betas in the two simulated AFD regimes are higher in absolute terms than in the data.

To improve the match with the original calibration, the V2 version increases the delta dispersion in the
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regime with negative AFD (νt equals 0.5). A mild variation in κ brings the correlation between interest

rates exactly to its value under the original model (0.11), leaving largely intact the rest of the statistics in

the top panel of Table 2. In this version the betas in the two AFD regimes remain large in magnitude.

Finally, the V3 version increases νt to 1, and also includes a small γ, which allows for country-specific

risk factors. This version comes closer to the original model with respect to the average standard deviations

σr and σr, and also matches the beta magnitudes when AFD < 0. The betas, however, remain large when

AFD > 0, and the two Sharpe ratios are now equal.9

Overall, these simulations support the LRVd model, showing that it can largely preserve the main

calibrated quantities from the original model, and at the same time match several stylized facts coming

from the cross section of invariant carry trades. While the model remains in reduced form, leaving open

the question about the identity of the global risks, it imposes certain economic structure by linking delta

dispersion to the AFD regimes. It also points to a possible relation with a growing literature that documents

similar dispersions beyond the context of the currency market, and seeks risk-based interpretations.

3.4. Static and dynamic carry components and the LRVd model

The modified model can be further supported independently of DOL and its relation to carry returns.

For this purpose we consider the static and dynamic components of the carry trade, as emphasized in Hassan

and Mano (2017), which for simplicity are defined here unconditionally, based on the full data sample,

where the NZD, AUD and NOK have the highest forward differentials (4.3, 3.1, and 2.1% annualized

average), while CHF and JPY have the lowest (-1.5 and -2.4%). The other average forward differentials

are 1.8% for GBP, 1.5% for SEK, 0.8% for CAD and -0.4% for EUR.

We examine two cases (denoted I and II) of the static and dynamic components of the Standard carry

trade (SC). In case I, the static component employs the five currencies with highest and lowest forward

differentials, leaving the remaining five to represent the dynamic component of the trade. In case II, the

9Note that all three versions have lower parameter γ than in the original model, giving zero or lower weight to the country-
specific risk factors ui

t , which would presumably induce stronger co-movements, due to the common factors uw and ug. Yet, the
correlations between the interest rates can remain the same, while those between the exchange rates in fact decrease, indicating
that the variable delta dispersion can generate significant heterogeneity among economies or currencies.
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static component uses only the three currencies with extreme forward differentials (NZD, AUD and JPY),

and the remaining seven account for the dynamic component.

The first three columns in the top panel of Table 3 show the average return of the SC trade and the

contribution of its two components (all annualized and in percent). The contribution of a static component

is found by setting to zero the return of each "dynamic" currency in the SC return, and similarly for the

contribution of a dynamic component. Note that in the full sample the contribution of the static component

is about twice bigger than that of the dynamic component, consistent with Hassan and Mano (2017), and

this holds even for version II with only three "static" currencies.

The main observation from Table 3, however, is that in the data the two components contribute differ-

ently to the SC return over the two AFD regimes. When AFD < 0, these contributions are equal (0.44 and

0.45) for case I, where the number of currencies in the two components are also equal (five in each); the

contribution of the static component is twice smaller for case II (0.31 vs. 0.59), but then also the number

of static currencies is also about twice smaller. In contrast, when AFD > 0, the static component is three

times bigger than the dynamic one in case I (1.13 vs. 0.36), and 6.8 times bigger in case II with only three

static currencies (1.29 vs. 0.19!). The contribution of each component is thus proportional to the number

of its currencies in one regime, while the static component strongly dominates in the other regime.

To check the statistical significance of the above differences, consider the statistics:

Ω
+ = ŜTAAFD>0/ŜCAFD>0−NSTA/NSC and Ω

− = ŜTAAFD<0/ŜCAFD<0−NSTA/NSC, (9)

where STA denotes the static component of SC, hats denote time-series averages, and NSTA/NSC is the

proportion of static currencies. These statistics allow comparisons across situations with different total

numbers of currencies and numbers of static currencies, such as we encounter in this paper.

When AFD < 0, Ω− is close to zero in the data. When AFD > 0, Ω+ = 1.13/1.49− 5/10 = 0.26 in

case I, and Ω+ = 1.29/1.49−3/10 = 0.57 in case II. Calculating Ω+ in 1000 random samples from STA

and SC, where observations corresponding to negative AFD are set to zero, we find less than 11% of these
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to be negative in case I, and only 4.6% to be negative in case II, confirming the distinction between the two

AFD regimes from the perspective of static and dynamic carry components. These results also imply that

the regression-based decomposition of carry trade returns in Hassan and Mano (2017) depends on the AFD

of the USD; in particular, the dominant role of the static component in carry trade returns appears to stem

entirely from the regime where AFD > 0.

Now consider the last three columns in the top panel of Table 3, which show analogous averages

obtained in 1000 simulations of the LRV model with 11 currencies. As per equation (2), the currencies

with the three highest and three lowest δi’s are designated as "static", and the ones with middle δi’s as

"dynamic", in case I. Similarly, the currencies with the two highest and two lowest δi’s are "static", and

those remaining are "dynamic" in case II. Of note, in the model, no difference is discernable between the

two regimes: both Ω+ and Ω− are close to 0.19 for each case, in contrast with what is observed in the data,

implying that the model has a built-in permanent dominance of static currencies.

Can the LRVd model reproduce the higher share of the dynamic component of the carry trade when

AFD < 0, as observed in the data? Intuitively, if deltas are compressed when AFD < 0, the first term in

(5) will have little contribution to average carry returns, which will be mostly driven by the second term

(with κ and z̃i
t). Since the zi

t’s share the same parameters, all currencies, static or dynamic, have about equal

chance to enter the carry trade, and hence the per-currency contribution of each component should be about

the same, exactly as was observed in the data when AFD < 0. On the other hand, when AFD > 0 the carry

trades in the model are dominated by the currencies with high and low deltas, i.e., the "static" currencies,

consistent with the observed higher share of the static component in carry returns in this AFD regime.

The bottom panel of Table 3 shows simulated results for the static and dynamic carry components in

the three versions of the LRVd model. The Ω− and Ω+ statistics are about 0.08 and 0.32 for versions V1

and V2, and 0.16 and 0.20 for V3. Recall that in the data Ω− is close to zero (when AFD < 0) and Ω+

equals 0.26 or 0.57 (when AFD > 0), while in the original LRV model Ω+ ≈ Ω− ≈ 0.19 in each case.

Therefore, versions V1 and V2 reproduce much better the pattern in the data.
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The static and dynamic components thus provide a separate confirmation for the LRVd model, unrelated

to DOL betas. A link between the original LRV model and the decomposition of carry returns is conjectured

in Hassan and Mano (2017, page 26), who emphasize the need for modeling certain asymmetry between

the USD and other currencies. They also suggest (their Section 3.2) that an additional state variable is

needed to reflect the special role of the USD, and our use of the AFD is in line with this suggestion.

4. Searching for global risk factors in the currency market

This section examines in a standard linear asset pricing framework (see Appendix D) a number of

variables as possible global risk factors, which are required both to explain the carry return cross section

and to be consistent with the predictions of the LRVd model. The approach is promising, since the model

reflects a number of data features and can impose realistic restrictions on our search.

4.1. Factor models to be estimated

Among a number of candidate global risk factors in the currency market, we look for pairs f 1 and f 2

that can accommodate a time-varying delta dispersion, as in the LRVd model. In practice, we estimate

three-factor linear models with factors f 1 and f 2, and a third factor that interacts f 1 with an indicator for

the sign of the AFD. For each carry trade i, the first-pass regression is of the form:

rxcarry,i
t+1 = α

i +ξ
i
1 f 1

t+1 +β
i
2 f 2

t+1 +ξ
i
2 f 1

t+11AFDt>0 + ε
i
t+1. (10)

The slope coefficient on f 1 is βi
1 = ξi

1 when AFDt < 0, and βi
1 = ξi

1 +ξi
2 when AFDt > 0.10

Two model predictions guide our search: First, ξ2 should be statistically significant, to reflect the

observed differences in risk pricing across the two AFD regimes. Second, β1 should be larger in magnitude

when AFD > 0, which can be seen as follows: if f 1 stands for the global factor uw
t+1 in equation (5), the

10In principle, the indicator 1AFDt>0 should also be included as a separate regressor, allowing to capture shifts in the regression
intercept over the two AFD regimes; however, we find that its slope coefficient is negligible in magnitude (about 100 times smaller
than the average carry return), almost never statistically significant (either when used together with the other three regressors in
our numerous specifications, or alone), and with no impact on the remaining coefficient estimates. We omit this term from our
regressions and tests.
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beta on this factor should be close to the time-series average of −
√̃

δi
t
√

zw, which, from (8), is:

−
√̃

δi
t

√
θw =−

˜√
δ+νt(δi−δ)

√
θw ≈−

√̃
δi
√

νtθ
w, (11)

given the equal weights of the long and short positions in a trade. When AFD > 0, the interest rates are

dominated by the term with zw
t in equation (2) and currencies with low (high) deltas tend to have positive

(negative) weights in
√̃

δi, yielding high beta even before multiplying by νt > 1. On the other hand, when

AFD < 0 not only is νt ≤ 1, but also interest rates are dominated by the term with κ, and hence low (high)

delta currencies can be short (long), further reducing the magnitude of the beta.

Importantly, we do not require that the ξ1 or β2 estimates be statistically significant, for two reasons.

First, unlike in the model, where the two global risk factors are orthogonal, the actual variables that we

use are typically correlated; we discuss below factor orthogonalization. Second, because the test assets are

long-short trades, they may not detect certain priced risks, if all individual assets that enter these trades

have similar betas with respect to the respective factors. Such a knife-edge situation is not ruled out, even

though it is not likely to occur in small samples, as has also been pointed out with respect to international

asset pricing models with ex-ante symmetric economies (e.g., Colacito et al. (2018), Section 4). The

model’s explicit prediction on the ξ2 estimate, however, is the centerpiece of our empirical approach.

4.2. Global financial and economic variables as candidate pricing factors

Finding standard systematic risk factors that can explain carry returns has been a somewhat elusive

goal, even though such factors were shown to have some explanatory power, especially in crisis times. We

continue this search, with a focus on global variables representing global equity and bond market risk, real

activity and various measures of financial and macro-economic uncertainty, and having a sufficiently long

history of monthly observations.

The full list of variables (18 in total) is shown in Table 4, and most of them have been used in prior

carry research. For example, Christiansen et al. (2011) and Daniel et al. (2017) show that equity and/or

bond market risks are priced in carry returns, and Melvin and Taylor (2009) study these effects in a regime-
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switching setup; Lettau et al. (2014) find significant role for a downside equity market risk; Ready et al.

(2016) show that the commodity and shipping cost indexes CRB and BDI impact carry returns; Lustig et

al. (2011) and Menkhoff et al. (2012) find that carry returns reflect global equity volatility and currency

volatility risk, respectively; Londono and Zhou (2017) examine the link between the variance risk premium

and the forward premium puzzle; Berg and Mark (2017) study the relation between carry trade returns and

a number of uncertainty indexes; the VIX index is considered in a carry context in Koijen et al. (2018).

Note that the boundary between global and US-based variables is sometimes unclear. For example, the

financial and macro-uncertainty variables of Jurado, Ludvigson, and Ng (2015) are constructed from the

conditional volatilities of a large number of financial or macroeconomic series, both global and US-based,

the VIX is nominally tied to the US equity market, and the "MPU" variables reflect the uncertainty in the

US monetary policy. Still, we include these variables in our set of candidate factors, as their importance for

the world economy is documented in prior studies. All variables are in percentage changes, except for the

three volatility (EQV, FXV, VIX) and three variance (CV, VP, VRP) variables, which are in first differences

of the respective monthly values, the latter three scaled by 100.

We explore all possible ordered pairs among the 18 variables. For each pair we interact the first variable

with the AFD sign indicator and estimate the respective three-factor model on the carry cross section. We

accept a pair if (i) at least half of the 45 estimates ξ2 are significant at the 5% confidence level, and (ii)

|ξ1 +ξ2|> |ξ1| for at least half of the 45 carry trades. In addition, no more than half of the 45 time-series

intercepts (alphas) can be significant at the 5% level when both factors are returns.11

4.3. Test results

Our empirical findings are quite unexpected: First, only 12 (out of 306!) pairs meet the above require-

ments. Second, only the global equity market index qualifies for the role of the f 1 factor; in this aspect our

results deviate from previous studies, which have often emphasized the role of variables capturing the risk

11The average annualized raw carry returns in our sample are on average equal to 2.2%, all of them are statistically significant
at the 5% confidence level, and more than half are significant even at the 1% level. Such a significance is desirable in pricing tests
which aim to explain average asset returns, but is not always observed, for example, for interest rate sorted portfolios.
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in volatility or other uncertainty measures for explaining carry returns and heterogeneity among currencies.

Third, even the pairs which meet the requirements do not perform uniformly well, and hence it remains a

challenge for the empirical work to find global risk factors in the currency market.

Table 5 shows results for the six pairs with the highest cross sectional R2 (out of the 12 accepted pairs).

The top panel in the table summarizes the output from time series regressions and shows average coefficient

estimates and, in parentheses, the number of respective estimates (out of 45) which are significant at the

5% confidence level. It also shows the p-values p1 to p4 for the tests evaluating the relevance of adding the

interacted term which distinguishes the two AFD regimes. The bottom panel reports results from cross-

sectional tests, including p-values for the GRS test statistic when both factors are returns.

First, the slope coefficients ξ1 are small and rarely significant, which can be consistent with high

compression of the deltas in the LRVd model when AFD < 0. In contrast, the slope coefficients ξ2 are

positive and much larger in magnitude, even if not always significant. The average time-series R2’s are

relatively low (10 to 17%). Second, the factor price of risk (λ) is highly significant for the equity index

and the interacted term. The cross-sectional R2’s are between 43 and 70%, and all three joint tests support

the model, with p-values above 0.20. Third, the p-values p1 to p4 are rarely below 10%, showing at best

marginal statistical advantage of adding the interacted term predicted by the LRVd model. Fourth, the

estimates for β2 are more often significant; we reiterate that our search procedure focuses on the interacted

term involving f 1, and does not depend on estimates related to f 2.

Table 5 also shows results for a three-factor model with DOL as f 1, Standard carry (SC) as f 2, and

a term interacting DOL with the AFD sign indicator. Recall that in our context DOL itself should not

be viewed as a valid candidate for a global risk factor, as its explanatory power for the invariant carry

cross section is obtained mechanically in the LRVd model, for any factors uw and ug; hence, it is more

informative about the factor structure in the data. We report on this model to highlight the distinctions with

the remaining factor models, and note that no model with SC in the role of f 1 meets our requirements.

In the model with DOL and SC, the alphas are not significant, the time-series R2 is above 83% on
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average (due to SC), and the factor risk prices are all significant. Yet, the GRS test statistic rejects the

model (the high R2’s make even small intercepts distinguishable from zero in the joint test), the cross-

sectional R2 is not too high (51%), and none of the tests of the nested models supports clearly the need for

an interacted term. These findings can be tentatively taken as evidence for the limitations of our three-factor

setup, but also highlight the similarity between the pricing ability of DOL for this cross section, which is

built in the LRVd model, and that of the global equity market risk factor.

The main message from Table 5 is that the global equity market factor is the only variable in our

set which can play the key role of the f 1 factor, and can be combined with variables ( f 2’s) of a different

economic nature, including a bond index, a proxy for real economic activity (BDI), and measures of macro-

and policy uncertainty. While the success of the equity factor, is not unambiguous, given the marginal

significance or lack thereof in some aspects, the fact that it stands out among all variables considered

indicates that interpretations of carry trade returns based on established systemic risks are feasible.

For completeness, Table Appendix-1 shows results for the remaining six of the 12 factor models which

satisfy our model selection requirements. These models deliver lower cross-sectional R2’s, less significant

prices of risk, and never come close to supporting statistically the relevance of an interacted term, given

the high p-values p1 to p4. In fact, these models marginally outperform the model which omits the f 2

factor (also shown in the table) only with respect to the time-series R2’s, implying that a stricter selection

procedure may allow even fewer candidate variables to be consistent with the LRVd model.

At this point we note that our results are robust to three aspects of the empirical strategy followed. First,

we have used throughout a carry cross section with returns denominated in USD, which are presumably

invariant to the choice of numeraire currency. Second, we have used a smoothed version of the AFD as a

key conditioning variable, as explained in Section 2.3. Third, the factors used in the tests are correlated,

with correlation coefficients sometimes exceeding 0.50 in magnitude, and not orthogonal, as postulated in

the model. Appendix E discusses additional results, which confirm that our conclusions are little affected

by these choices.
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4.4. AFD regimes

While the identity of the "true" global factors in the currency market remains an open question, we

have nevertheless found candidate variables that can explain differently carry returns over the two AFD

regimes, which is a major prediction of the LRVd model. Seeking economic intuition for our results, next

we examine in more detail the two regimes.

What variables take significantly different values over these regimes? We consider here some of the key

variables from Table 4, together with: (i) total GDP growth, industrial production growth (denoted "IP")

and changes in unemployment ("UNEMP") of the OECD economies, (ii) a measure of dealer leverage

("DLEV"), and (iii) measures of global liquidity and cross-border loans ("GLIQ" and "CB"), related to

bank lending in foreign currencies in the global economy.12 We also consider the Global financial cycle

factor of Miranda-Agrippino and Rey (2017) (denoted "GFC", with data from the authors’ website), which

summarizes the common price variation in a large set of risky assets traded around the world, and reflects

the US monetary policy (see also Rey (2015) and Passari and Rey (2015)). We use the shorter version of

the factor (covering 1990-2012), spliced with the longer one over 1985-1989, with matched values at the

first overlapping point. Because the initial value of the factor is undetermined, we consider differences and

not percentage changes.

Table 6 shows results from categorical regressions of the above variables on a constant and the indicator

function 1AFDt>0. The intercept in such a regression equals the average value of the dependent variable

in the regime AFD < 0. The sum of the intercept and slope estimate equals the average value when

AFD > 0, and the p-value for the slope allows us to test whether the two averages are equal. The table

shows statistically significant (at the 10% confidence level) differences over the two AFD regimes for two

12Bruno and Shin (2015) argue that changes in the leverage of international banks are closely related to other risk measures
(like the VIX); these changes impact cross-border bank capital flows and hence the demand for foreign assets, as well as their risk
premia, and can generate a feedback loop of changes in leverage, flows, and risk premia, which eventually affects exchange rates.
Such a mechanism was first proposed in Borio and Zhu (2012) as a "risk taking channel" of transmission of monetary policy, in
a domestic context (see also Shin (2015)). Koijen et al. (2018) examine explicitly the relation between carry trades and global
liquidity risk. DLEV is calculated as in Bruno and Shin (2015), with data for US security brokers and dealers’ liabilities and
equity from the Federal Reserve. GLIQ is from www.bis.org/statistics/gli.htm and CB from www.bis.org/statistics/bankstats.htm,
all representing loans from banks in all countries and all types of instruments. About half of the cross-border loans (CB) are in
USD and about a quarter in Euro.
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global real activity variables, the financial and macro-uncertainty variables of Jurado et al. (2015), and the

bank loan variables, in particular when they are expressed as a percentage of the global GDP. Different

signs and large differences between the averages (even if not statistically significant) are observed for the

dealer leverage, GFC, and most of the volatility/variance variables.

Therefore, the AFD > 0 regime is characterized by (i) lower global output growth and growing un-

employment, (ii) decreasing uncertainty, (iii) stagnant or slowly growing cross-border bank loans in for-

eign currency, and (iv) depreciating USD. This regime covers about 70% of the sample period, and can

be viewed as a "normal" regime. In the remaining 30% of the sample these features are reversed, with

stronger real economy and higher liquidity, but also increasing uncertainty, higher US interest rates and

appreciating USD, and this can be seen as a "boom" regime.

Figure 2 indicates the periods when AFD < 0, the NBER recessions, and also plots the GFC.

[Figure 2 about here.]

It is seen that few years of negative AFD precede the two most recent US recessions, but not the one in

1991; there is also a brief recent period of negative AFD which does not lead into a recession. The graph

also shows that the two peaks of the GFC are well aligned with the regime of negative AFD (the available

data does not extend to 2015), and indicates that the AFD regimes reflect some global cycle.13

Probing further the role of the GFC factor, we include it in asset pricing tests, applying the same criteria

as before, and report the results in Table 7. First, the GFC indeed has some pricing ability for the carry

cross section, and is included in four models that meet our requirements. Second, while we have used it

in all possible ordered pairs, it qualifies only for the role of the f 1 factor. Third, the cross-sectional R2’s,

with one exception, are much lower than previously. While the shorter period over which GFC is available

(ending in 2012) may impact the results, these findings point to a potentially important link between the

GFC and currency market risks, consistent with the LRVd model, and provide additional justification for

13Unlike the global real activity variables (output and unemployment growth) in Table 6, the corresponding US variables do not
show even marginally significant differences over the two AFD regimes, with p-values above 0.20.
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our treatment of the AFD of the USD as a global (conditioning) variable.

4.5. The challenge of counter-cyclical dispersion

We have argued that the sensitivity of different currencies towards certain global risk exhibits counter-

cyclical dispersion: higher in a "normal" regime of the global economy, and lower in a "boom" regime.

While counter-cyclical cross-sectional dispersion in various variables has been previously found in a single-

economy context (see Section 3.2), the currency market offers new perspectives. For example, it appears

to be exposed to a different type of a cyclical dynamics, related to the GFC, which in turn requires new

interpretations of the underlying economic mechanisms. The following three examples illustrate such need.

Bloom (2014, page 155) has forcefully argued that counter-cyclical dispersion reflects the behavior

of uncertainty over time, stating: "In fact, almost every macroeconomic indicator of uncertainty I know

of - from disagreement amongst professional forecasters to the frequency of the word "uncertain" in the

New York Times - appears to be counter-cyclical." He adds that uncertainty endogenously increases during

recessions, as lower economic growth induces greater micro- and macro-uncertainty. Our Table 6, however,

has shown that in the AFD regimes higher uncertainty goes together with higher economic growth, and vice

versa, reflecting different economic dynamics, or possibly a distinction between good and bad uncertainty,

in the spirit of Bekaert and Engstrom (2017) or, similarly, Segal, Shaliastovich, and Yaron (2015).

Frazzini and Pedersen (2013, Proposition 4) develop a model predicting that the cross-sectional disper-

sion in (market) betas should be lower when individual credit constraints are more likely to be binding, and

demonstrate that in their sample this dispersion shrinks when credit is more likely to be rationed. However,

Table 6 shows that when AFD < 0 (and dispersion is arguably lower), most measures of global liquidity

growth exceed those in the alternative regime, with differences that are typically statistically significant. A

liquidity-based interpretation of dispersion in the currency market context may need to be refined.

Bruno and Shin (2015, page 119) find that "... a contractionary shock to US monetary policy leads

to a decrease in cross-border banking capital flows and a decline in the leverage of international banks

... associated with an appreciation of the US dollar." Table 6, however, reveals a different angle and in
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particular associates dollar appreciation with increased bank flows, indicating that the cycle reflected in the

AFD regimes requires careful further analysis.

5. Conclusion

A number of recent studies have advanced the understanding of the risks that are priced in the currency

market, and have proposed variables that reflect such risks and can play the role of currency risk factors.

Given the global nature of the currency market, such variables are typically seen as global risk factors.

This paper contributes by introducing a novel cross section of currency carry trades, which is well-

suited for studying the global risks in the currency market, and can provide new insights on the carry trade

itself. We use this cross section, first, to derive some stylized facts related to the pricing ability of the USD

for carry trades, which have not been previously reported. Second, we turn to the model in Lustig et al.

(2014), verify whether it can explain these facts, and then introduce time-varying cross-sectional dispersion

in one of the model’s parameters and demonstrate the empirical advantages of the modified model LRVd .

Next, we exploit the insights of the modified model in a search for global risk factors among a range of

variables considered in prior carry studies; the role of the model to impose discipline in the search for such

factors and their economic interpretation. Our tests show that only a few combinations of previously used

factors can meet our requirements, and at the same time highlight the role of a global equity market factor

in this context, and possibly of a variable capturing the Global financial cycle proposed in Rey (2015).

Our main insight is that global risks in the currency market are likely related to time variation in the

dispersion of sensitivities (of currencies or economies) to global equity risk, whereby high dispersion is

associated with "normal" economic environment and low dispersion characterizes "boom" periods. While

similar counter-cyclical dispersion has been observed in single economies with respect to a number of

economic and financial variables, and has prompted various economic interpretations in the literature, our

evidence indicates that the global currency market may require alternatives interpretations, which are left

for future research.
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Appendix

A. Numeraire-invariant currency trades

Suppose, first, that the USD is the numeraire currency and define the weight of currency i at time t

in a trade as wi
t . With spot and forward exchange rates denoted as Si

t and F i
t , and quoted as USD per one

unit of foreign currency, the return of a USD-based currency trading strategy over the interval t to t + 1

is: rUSD
t+1 = ∑

N
i=1 wi

t
(
Si

t+1/F i
t −1

)
. Now consider the same strategy, say, from the perspective of a Japanese

investor, and express its return in Japanese yen (JPY). If we denote the JPY exchange rates by Si
t and F i

t

(quoted as JPY per one unit of currency i), then the strategy’s return (in JPY) is:

rJPY
t+1 =

N

∑
i=1

wi

(
Si

t+1/F i
t −1

)
=

N

∑
i=1

wi
t Si

t+1/F i
t −

N

∑
i=1

wi
t . (12)

We assume as key features for the trades under consideration that the short and long legs of the trade

have equal weight, and that the positions in the trade are the same for all currency perspectives. These

are standard features of carry and other currency trades, both in academic studies and practical implemen-

tations. For any such trade, the term ∑
N
i=1 wi

t at the end of (12) cancels, for any t, and we are left with

rJPY
t+1 = ∑

N
i=1 wi

tS
i
t+1/F i

t . By triangular arbitrage, we can also derive:

rJPY
t+1 =

(
rUSD

t+1 +
N

∑
i=1

wi

)
SUSD

t+1 /FUSD
t = rUSD

t+1 FJPY
t /SJPY

t+1 . (13)

As the forward to spot ratio in (13) multiplies a return and is close to one, the difference in the returns from

the perspectives of the USD and JPY is of a second order. This conclusion can be clarified if we repeat the

previous calculation for log returns:

rJPY
t+1 =

N

∑
i=1

wi
t log

(
Si

t+1/F i
t

)
=

N

∑
i=1

wi
t log

(
Si

t+1/F i
t SUSD

t+1 /FUSD
t

)
=

N

∑
i=1

wi
t log

(
Si

t+1/F i
t
)
+

N

∑
i=1

wi
t log

(
SUSD

t+1 /FUSD
t

)
=

N

∑
i=1

wi
t log

(
Si

t+1/F i
t
)
+ log

(
SUSD

t+1 /FUSD
t

) N

∑
i=1

wi
t =

N

∑
i=1

wi
t log

(
Si

t+1/F i
t
)
+0 = rUSD

t+1 , (14)

which verifies that the log returns of our trades, as seen from all perspectives, are identical. It follows
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that the differences between the percentage returns of such trades from different perspectives are due to a

convexity correction (see also Bekaert and Panayotov (2017, Appendix I)).

The above derivations do not rely on equality between individual currency positions (i.e., equal weights),

but only on equal total long and short sides of the trade. Therefore, various trades can achieve invariance

of returns if their implementation respects this equality. Note that the notion of numeraire invariance is not

confined to carry trades: momentum, value and other currency trades considered in the literature often are

or can be made invariant. However, since the conditioning variable (i.e., trading signal) for carry trades is

the interest rate differential, their returns can be easily formalized within the framework of international

asset pricing models, and hence carry trades offer a unique advantage from a modeling perspective.

B. Additional details about the cross section of invariant carry trades

If Si
t denotes the spot exchange rate of currency i at the end of month t, quoted as USD per one unit

of foreign currency, and F i
t is the forward exchange rate at the same time and quoted in the same way,

then the percentage return at the end of month t + 1 of one USD invested at the end of month t in a long

or short forward foreign currency contract is rxi,long
t+1 = Si

t+1/F i
t −1 or rx j,short

t+1 = 1−S j
t+1/F j

t , respectively.

The return of a carry trade from t to t + 1 is then rxt+1 = ∑
3
i=1 rxi,long

t+1 /6+∑
3
j=1 rx j,short

t+1 /6, where i and j

index the three currencies at the top and at the bottom of the forward differential ranking.

We consider the cross section of all trades that use all possible combination of eight out of the ten G-10

currencies. The total number of these trades is 45, and the length of the return time-series used is 383

months (12/1984 till 11/2016). The table insert below presents summary statistics:

avg.ret. st.dev. SR skew

SC 2.38 4.58 0.52 -0.84

max 2.86 4.67 0.71 -0.01

median 2.28 4.13 0.53 -0.61

min 1.21 3.41 0.30 -0.82

prop. below 0.62 0.84 0.49 0.00

30



The first row shows average returns and return standard deviation (in percent and annualized) for the

Standard carry trade (SC) constructed using all G-10 currencies, together with its Sharpe ratio (annualized)

and return skewness. The next three rows show the maximum, median and minimum value of the respective

statistic across the 45 trades from eight currencies. The last row shows the proportion of the 45 values of

each statistic that are below the corresponding one for the SC trade.

The numbers in the table insert illustrate the variation in average returns in the cross section that are

to be explained. The highest average return is more than twice larger than the lowest ones, but this spread

is somewhat lower than that observed, for example, for the 25 size and book-to-market sorted US equity

portfolios over the same sample period (maximum return of 15.9% and minimum of 4.5%). On the other

hand, the return correlations within the currency trade cross sections are comparable with those for these

equity portfolios: the maximum, median and minimum correlations are 0.96, 0.85 and 0.57 for the carry

cross section, and 0.96, 0.80 and 0.44 for the equity cross section.

Note also that the carry trades from eight currencies in many cases exhibit better return profiles than

the Standard carry trade (SC) from all G-10 currencies: about 40% of these have higher average return than

SC, about half have higher Sharpe ratio, and all without exception have less negative skewness.

C. Dollar betas and carry returns in the LRV model

In the LRV model, DOL and the return of an invariant carry trade can be expressed as:

DOLt+1 = rxi
t+1 =

1
2
(γ+κ)(zt − zi

t)+
1
2
(δ−δi)zw

t

+
√

γztut+1−
√

γzi
tui

t+1 +
(√

δ−
√

δi
)√

zw
t uw

t+1 +
√

κ

(
√

zt −
√

zi
t

)
ug

t+1 (15)

rxcarry
t+1 = −1

2
(γ+κ)z̃i

t −
1
2

δ̃izw
t −

√̃
γzi

tui
t+1−

√̃
δi
√

zw
t uw

t+1−
√

κ

√̃
zi

tu
g
t+1, (16)

where tilde (˜) denotes weighted average across all currencies in the sample, possibly including the USD,

where the weights are those given to individual currencies in a carry trade. All carry trades considered

are symmetric, with three long and three short positions with equal weights, hence the sum of the weights
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denoted by a tilde equals zero (whereas the sum of the weights denoted with an over-bar equals one).

Furthermore, the second term in (15) cancels, as by assumption (δ−δi) = 0.

From equations (15) and (16), note that the shocks in the model are uncorrelated, so the contributions

to the unconditional covariance between DOL and carry trade returns, if any, should come from products

of terms with the same shocks in the two equations, and more precisely from the time-series averages

of such products. The first terms in (15) and (16), containing (zt − zi
t) and z̃i

t , should not contribute to

covariance: from equation (7) in Section 3.2, zi
t includes zt and the zi

t’s all with positive signs, while z̃i
t has

an equal number of them with positive and negative signs, so these two terms should not induce covariance

between DOL and carry returns. Furthermore, zt is not correlated with the zi
t’s in z̃i

t . Finally, zt enters z̃i
t

with positive or negative signs with equal probability, as δ = δi, whereas the zt in (7) has always a positive

sign, and hence these terms also do not generate covariance.

A similar argument can be applied to the terms with ut+1 and ui
t+1, as well as to those with ug

t+1 in (15)

and (16), where again the positive and negative contributions to covariance resulting from zt and the zi
t’s

cancel overall, due to the symmetry of the long and short sides in the carry trade. Crucial for this argument

is describing the dynamics of zt and all zi
t’s with the same parameters, as shown in equation (1).

On the other hand, the terms with uw
t+1 could have a non-negligible effect, reflecting three facts: (i)

δ̃i is on average a negative number, because currencies with high δi tend to have low interest rate, from

equation (2), and will be more likely shorted in the carry trade, and vice versa for currencies with low δi;

(ii) zw
t is always positive; and (iii)

√
δ >
√

δi due to the convexity of the square root and the assumption

δ = δi. Importantly, such non-zero covariances will generate some cross sectional correlation between

average carry returns (containing δ̃izw
t ) and DOL betas (containing

√̃
δizw

t ), as observed in the data.

Nevertheless, the actual impact of the terms with uw
t+1 is likely to be small, as (i) the convexity correc-

tion is of second order, and (ii) the terms with δi may not always dominate the interest rates in (2), and

hence determine their ranking; deviations of this ranking from that of the δi’s reduces the magnitude of δ̃i.
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D. Design of cross-sectional pricing tests

The pricing kernel (or stochastic discount factor, SDF) is mt+1 = 1 − b′ ( ft+1−µ f ), where E (mt+1) =

1, b is a constant vector of SDF coefficients, ft+1 is a vector of risk factors, and E ( ft+1) = µ f . The kernel

is normalized when excess returns are used and hence the expectation of the SDF is not identified. The

excess percentage returns of the test assets, indexed by i, are denoted by rxi
t+1. The pricing model and its

beta representation are:

E[rxi
t+1mt+1] = 0 and E[rxi

t+1] = λ
′
β

i, (17)

with systematic risk exposures for asset i given by the vector βi, and factor risk prices denoted by λ. The

β’s are estimated from time-series regressions of returns on the factors, and we then run a cross-sectional

regression (without a constant) of average returns on the β’s to estimate the λ’s.

Standard errors for the coefficient estimates are obtained via GMM, accounting for heteroskedasticity,

as in Cochrane (2005, Chapters 12 and 13). We also include one Newey-West lag, as in Lustig et al.

(2011). To establish robustness, we also follow Shanken and Zhou (2007) who develop testing techniques

which do not impose the null hypothesis that a model is correctly specified, but instead estimate statistics

that are valid for potentially mis-specified models as well. Such a conservative estimation approach is

justified when different criteria for model validity show sometimes marginal or no significance, and/or do

not always agree, and when non-return variables are used as factors, as we do in many of our tests.

We report p-values for the χ2 statistic, which tests whether the pricing errors are jointly equal to zero

(Cochrane (2005, pp. 241-243)), as well as cross-sectional R2’s and approximate finite sample p-values of

Shanken’s CSRT statistic (mis-specification robust) as in Kan, Robotti, and Shanken (2013). Where appro-

priate, we also show the p-value for the GRS statistic of Gibbons, Ross, and Shanken (1989). Finally, we

show p-values for four tests comparing models that include a term reflecting time-varying delta dispersion

with the nested models without such a term. These are the tests that compare cross-sectional R2’s for cor-

rectly specified and mis-specified models, as in Kan et al. (2013), the test based on the Hansen-Jagannathan

distance as in Li, Xu, and Zhang (2010), and the weighted χ2 test of Gospodinov, Kan, and Robotti (2013).
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E. Three robustness checks

This appendix discusses the robustness of our results in three aspects, related to the construction of the

test assets, the AFD variable used in the paper, and the orthogonality of the factors in the LRV model.

As mentioned in the introduction, our carry trade return cross section is only approximately numeraire-

invariant. While this invariance holds exactly for log-returns, the percentage returns which are used

throughout the paper deviate from this exact feature, due to a convexity correction term. Maurer et al.

(2018) have identified a specific (monotonic) pattern in this deviation, whereby the returns (and Sharpe

ratios) of carry trades constructed from the perspective of the currencies with the highest interest rates are

consistently lower than those taking the perspective of the lowest interest rate currencies. This pattern is

confirmed in our sample, where the returns obtained in JPY (the lowest-yielding currency) exceed those

in NZD (the highest-yielding currency) by 17% on average (1.99% vs 2.33%). Because the pattern is

monotonic, this is the maximum discrepancy among all pairs of currency perspectives in our sample.

We do not expect this deviation from exact invariance to affect our main conclusions, and in particular

those from the asset pricing tests; but, because the returns constructed from different currency perspec-

tives exhibit almost perfect correlation (above 0.995 on average, as pointed out in the introduction), for

completeness we replicate some results using the carry cross sections constructed from the (extreme) per-

spectives of the NZD and JPY. Table Appendix-2 corresponds to Table 5 and shows the results for the two

currency perspectives one above the other (separated by a line), to facilitate comparison.

Despite minor differences, the two perspectives lead, notably, to practically identical conclusions,

which in turn fully agree with those in Section 4.2, obtained from the perspective of the USD. Except for

the alphas in the time-series regressions, the magnitudes and significance of the various estimates match

closely. The ξ2 coefficients obtained from the JPY perspective are somewhat smaller, and lose significance

in some cases, but all previous conclusions remain intact. This comparison strongly confirms our main

premise that the carry cross section used in this paper exhibits an important invariance feature, making it

particularly suitable for the study of global risks in the currency market.
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The second robustness exercise relates to the AFD of the USD. As clarified in Section 2.3, we use a

three-month moving average of the AFD, which effectively ignores the sign changes due to a few extreme

moves in the AFD series that revert within one month, and highlights the strong regime-like pattern in the

sign of the AFD. It is important to verify that this choice does not materially affect the results.

In Table Appendix-3 we repeat the tests for the models reported in Table 5, using the raw, and not

smoothed AFD series. While the results are again consistent with those in Table 5, now the estimate of

ξ2 is smaller in magnitude and less often significant. At the same time, the p-values p1 to p4 are below

10%, with just few exceptions (many are even below 5%), in support of the importance of a time-varying

dispersion in the loadings on one of the global risk factors. Furthermore, the results from the cross-sectional

tests are essentially identical, with or without smoothing the AFD.

Finally, we address the impact of the fact that the factors used in our tests are often correlated, thus

deviating from the model assumptions. We repeat the tests from Table 5 (except for DOL and SC), but

now using instead of the original f 2 factor its component orthogonal to f 1, defined as: f 2,orth = f 2−b f 1,

where b is the slope coefficient from regressing f 2 on f 1 and a constant. Table Appendix-4 shows, first,

that the ξ1 estimates are now the same in all six models; they are in fact equal to the regression slopes

in univariate regressions with only the f 1 factor, which is also shown in the table (for a proof of this fact

see, e.g., Liu, Sercu, and Vandebroek (2015, page 262)); the number of significant estimates is sometimes

slightly higher, due to the effect of estimated regressors. (Note that the number of significant estimates

differs in some of the six specifications due to the different number of available observations for f 2, as per

Table 4.) Second, the λ2 estimates are somewhat larger in magnitude, and marginally significant in two

cases. What is important for our study, however, is that the estimates related to the interacted term and the

identity of the factors that meet our requirements remain intact, and so do the various measures of model

fit. Therefore, orthogonalizing the two global factors has little effect on our main conclusions.
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Table 1
A two-factor model from different currency perspectives
This table presents results from tests of a two-factor model with the DOL and HML factors of Lustig et al.
(2011) on six interest rate sorted currency portfolios (denoted P1 to P6), with data from Verdelhan’s website
("All countries" version, without transaction costs), extended till 11/2016. Each column shows results for
the test assets re-denominated in the currency displayed in the first row. The five panels show the mean
return of each portfolio and intercepts (alphas), both annualized and in %, as well as slopes (betas) from
time-series OLS regressions of the monthly portfolio returns on the two factors, and the corresponding R2’s,
in %. Statistical significance of an estimate at the 5 (10)% confidence level is denoted by two (one) stars.
The last two rows show prices of risk (lambdas, annualized and in %) for the two factors, with standard
errors estimated via GMM (see also Appendix D), again for each currency perspective. The sample period
is 12/1984-11/2016.

NZD AUD GBP NOK SEK CAD USD EUR CHF JPY

mean P1 -6.25** -3.49 -3.04* -3.34** -2.44 -1.74 -1.12 -2.42** -2.59** -1.21
P2 -4.96** -2.28 -1.81 -2.07 -1.16 -0.52 0.14 -1.09 -1.17 0.30
P3 -3.62* -0.93 -0.44 -0.69 0.21 0.86 1.55 0.28 0.19 1.68
P4 -1.98 0.69 1.22 0.94 1.82 2.53* 3.27** 1.93* 1.86 3.47*
P5 -0.93 1.79 2.33 2.03 2.92** 3.67** 4.39** 3.03** 2.94** 4.54**
P6 0.71 3.40* 4.14** 3.86** 4.75** 5.41** 6.21** 4.93** 4.88** 6.45**

α P1 -0.85 2.36 0.38 0.43 1.48 1.18 -0.71 0.14 -1.10 -2.24
P2 -1.13 1.99 0.04 0.12 1.20 0.82 -1.02* -0.08 -1.23 -2.27
P3 0.04 3.18* 1.24 1.34 2.40* 2.05 0.22 1.11 -0.05 -1.07
P4 0.52 3.62** 1.74 1.81 2.85** 2.56** 0.79 1.61* 0.47 -0.43
P5 1.09 4.25** 2.38 2.42** 3.47** 3.21** 1.43** 2.24** 1.06 0.16
P6 -1.27 1.83 0.21 0.28 1.32 0.96 -0.71 0.16 -0.95 -1.85

βDOL P1 -0.09 0.08 -0.04 -0.36** -0.37** 0.53** 1.03** -0.46** -0.48** 0.05
P2 -0.24** -0.08 -0.20** -0.51** -0.53** 0.37** 0.87** -0.61** -0.63** -0.11
P3 -0.17** -0.01 -0.13** -0.45** -0.46** 0.44** 0.94** -0.54** -0.56** -0.04
P4 -0.10 0.06 -0.05 -0.37** -0.38** 0.51** 1.02** -0.47** -0.49** 0.03
P5 -0.02 0.14* 0.02 -0.29** -0.31** 0.59** 1.10** -0.39** -0.41** 0.11
P6 -0.08 0.08 -0.04 -0.35** -0.37** 0.53** 1.03** -0.45** -0.47** 0.04

βHML P1 -0.71** -0.83** -0.45** -0.40** -0.41** -0.57** -0.39** -0.20** -0.05 0.12**
P2 -0.44** -0.56** -0.19** -0.13** -0.15** -0.31** -0.13** 0.06** 0.22** 0.39**
P3 -0.44** -0.56** -0.19** -0.13** -0.15** -0.31** -0.13** 0.07** 0.22** 0.39**
P4 -0.31** -0.42** -0.05 0.00 -0.02 -0.17** 0.00 0.20** 0.35** 0.52**
P5 -0.27** -0.38** -0.01 0.04 0.03 -0.13** 0.04** 0.24** 0.39** 0.56**
P6 0.30** 0.19** 0.55** 0.61** 0.59** 0.43** 0.61** 0.80** 0.95** 1.12**

R2 P1 31.4 36.6 19.6 30.8 30.2 39.9 90.4 32.8 22.9 1.7
P2 16.0 21.0 7.8 26.9 24.5 19.2 75.6 38.4 30.5 11.3
P3 15.5 21.3 5.7 20.4 19.6 22.3 78.6 31.4 26.6 11.3
P4 7.2 12.9 0.2 13.3 13.2 21.4 79.1 30.8 29.8 17.5
P5 5.0 10.1 -0.5 7.6 7.2 21.6 79.7 22.9 27.8 21.6
P6 6.8 3.1 25.9 40.5 37.0 38.3 93.8 65.3 67.5 61.1

λDOL 7.98 17.62* -1.05 -0.04 -2.55 5.98** 2.44 0.92 3.29 10.98**
λHML 6.31** 3.46 6.96** 7.35** 7.47** 6.97** 7.36** 7.62** 7.60** 5.31
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Table 2
Simulations of the LRV model and modified versions
The LRV model parameters are as in Lustig et al. (2014), Table 5, except for α, which we choose to fit the
average nominal interest rate, following Brusa et al. (2015):

α (%) χ γ κ τ δM δL δU φ θ (%) σ (%) φw θw (%) σw (%)
1 0.89 0.04 2.78 0.06 0.36 0.22 0.49 0.91 0.77 0.68 0.99 2.09 0.28

The δi’s in equation (1) are uniformly distributed between δL and δU , with a middle value δM, which is
assumed to correspond to the US pricing kernel. The versions of the modified model LRVd , denoted V1,
V2 and V3, have time-varying deltas given by δi

t = δM + νt(δ
i− δM). The modified versions also have

different values for γ and time-varying κt = ξtκ, with different ξt when AFD < 0 and AFD > 0:

νt ξt γ

AFD < 0 AFD > 0 AFD < 0 AFD > 0
LRV 1 1 1 1 0.04
V1 0 2.5 1 1 0.00
V2 0.5 2.5 0.95 1.05 0.00
V3 1 2.5 0.95 1.05 0.01

We simulate 11 sets of interest rates (r) and currency excess returns (rx), with exchange rates quoted against
the USD. The top panel in the table shows, for each model version, averages across 1000 simulations of
average interest rates and their standard deviations (r and σr, annualized and in percent), as well as the
average correlation between them (ρr), and similar for the currency returns. Also shown are average Sharpe
ratios for the Dollar carry (DC) and Standard carry (SC) trades. The bottom panel of the table shows, as
in Sections 2.3 and 3.1, correlations between model-based DOL betas of carry trades and average carry
returns, together with 5-th and 95-th beta percentiles, for the full sample and for each of the two AFD
regimes. We construct all possible carry trades from nine out of 11 simulated currencies (55 trades). The
"data" row reproduces the quantities from the 45 trades in our sample.

Sharpe ratio
r σr rx σrx ρr ρrx DC SC

LRV 4.24 0.29 0.63 10.4 0.11 0.41 0.24 0.48
V1 4.44 0.44 0.54 9.0 -0.001 0.23 0.43 0.36
V2 4.46 0.43 0.64 9.1 0.11 0.22 0.43 0.37
V3 4.41 0.39 0.71 10.1 0.17 0.25 0.37 0.36

AFD < 0 AFD > 0
corr β5−th β95−th corr β5−th β95−th corr β5−th β95−th

data 0.75 0.07 0.24 0.05 -0.28 -0.11 0.73 0.15 0.33
LRV 0.09 -0.02 0.05 0.04 -0.27 -0.14 0.07 0.14 0.28
V1 0.64 0.09 0.25 -0.02 -0.75 -0.64 0.65 0.75 1.03
V2 0.59 0.17 0.36 -0.01 -0.61 -0.44 0.64 0.75 1.01
V3 0.57 0.18 0.34 0.16 -0.30 -0.12 0.55 0.54 0.74
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Table 3
Static and dynamic components of the carry trade
The table shows returns of the Standard carry trade (SC) or its static and dynamic components, annualized
and in %. "full" refers to the full sample period, and the table also shows results for the subperiods of
negative and positive AFD, respectively. The numbers for the two subperiods sum to the corresponding
one for the full period, and the numbers for the two components sum to that for the SC trade. In the
columns denoted "data" in the top panel, SC is the carry trade constructed from all G-10 currencies (three
highest- and three lowest-yielding currencies, with equal weights), the static component is defined as the
contribution of NZD, AUD, NOK, CHF and JPY in case I, and only of NZD, AUD and JPY in case II.
The dynamic component complements the static component to the return of the SC trade. The columns
denoted "LRV model" show averages of analogous numbers obtained in 1000 simulations of the LRV
model with 11 currencies. Here SC refers to the carry trade using all 11 simulated currencies (three highest-
and three lowest-yielding ones, with equal weights). The currencies with three (two) highest and three
(two) lowest values of the δi are designated as static in case I (II), and the complementing currencies are
dynamic. The bottom panel of the table shows, similar to the "LRV model" columns in the top panel, the
corresponding results from simulations of the three versions of the modified LRV model (V1 to V3), as
defined in Section 3.2 and Table 2.

data LRV model

full AFD < 0 AFD > 0 full AFD < 0 AFD > 0

SC 2.38 0.90 1.49 2.70 1.30 1.40

Static I 1.80 0.44 1.13 1.87 0.89 0.97
Dyna. I 0.58 0.45 0.36 0.83 0.41 0.42

Static II 1.60 0.31 1.29 1.32 0.63 0.69
Dyna. II 0.78 0.59 0.19 1.38 0.67 0.71

V1 V2 V3

full AFD < 0 AFD > 0 full AFD < 0 AFD > 0 full AFD < 0 AFD > 0

SC 3.46 1.33 2.14 3.41 1.23 2.18 3.50 1.30 2.20

Static I 2.72 0.85 1.87 2.69 0.81 1.88 2.87 0.96 1.91
Dyna. I 0.74 0.48 0.27 0.72 0.41 0.30 0.63 0.34 0.29

Static II 2.04 0.59 1.45 2.02 0.57 1.45 2.17 0.69 1.48
Dyna. II 1.43 0.74 0.69 1.39 0.66 0.73 1.33 0.60 0.73
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Table 6
AFD regimes
A number of variables are regressed on a constant and an indicator function 1AFDt>0. The intercept in
such a regression equals the average of the respective variable in the regime AFD < 0, and these inter-
cepts are shown in the columns denoted "AFD < 0" (in percent). The sum of the intercept and slope
coefficient estimate in such a regression equals the respective average when AFD > 0, as shown in the
columns "AFD > 0". "p-val" denotes p-values for the slope, estimated with Newey-West standard errors
with automatically selected lag length. The top panel shows results for variables from Table 4, and few
additional variables as defined in Section 4.4: GDP, industrial production and unemployment growth in
the OECD economies (GDP, IP and UNEMP), and changes in dealer leverage and the Global financial
cycle factor (DLEV and GFC). The bottom panel refers to bank loans in foreign currency from the BIS
Locational Banking Statistics (quarterly data). Subscripts "A", "B" and "NB" denote loans to all, bank and
non-bank borrowers (from all countries, all types of instruments), respectively. The columns on the left
(right) of the panel refer to percentage change in such loans (ratios of such loans to the total GDP of the
OECD). The "GLIQ" (global liquidity) variables include cross-border and local loans, in all currencies.
The "CB" (cross-border) variables include only cross-border loans, in all currencies, USD, or Euro, as
shown in parentheses, and are adjusted for exchange rate changes and breaks in the series.

AFD<0 AFD>0 p-val AFD<0 AFD>0 p-val

GDP 0.72 0.53 0.10 EQV 0.08 -0.02 0.53
IP 0.24 0.11 0.12 FXV 0.01 0.05 0.67
UNEMP -0.26 0.11 0.09 VIX 0.04 -0.02 0.42

MSCI 0.92 0.85 0.88 CV 0.50 -0.36 0.30
BGB 0.40 0.54 0.48 VP -0.09 -0.06 0.96
BGT 0.37 0.56 0.37 VRP 0.40 -0.42 0.49
BGHY 0.69 0.89 0.57

FINU 0.70 -0.22 0.05
GFC 0.49 -0.10 0.69 MCRU 0.29 -0.13 0.10
DLEV 0.58 -0.23 0.43 DOL -0.22 0.33 0.01

GLIQA 2.25 1.90 0.69 1.13 0.27 0.14
GLIQB 2.05 1.69 0.71 0.93 0.07 0.18
GLIQNB 2.60 2.17 0.58 1.48 0.54 0.07

CBA (All) 2.89 1.50 0.06 1.82 -0.12 0.00
CBA (USD) 2.48 1.21 0.06 1.33 -0.36 0.00
CBA (Euro) 3.42 2.33 0.25 2.38 0.69 0.04
CBB (All) 2.74 1.29 0.08 1.64 -0.32 0.00
CBB (USD) 2.43 0.92 0.03 1.23 -0.64 0.00
CBB (Euro) 3.13 2.40 0.49 2.00 0.78 0.18
CBNB (All) 3.17 1.85 0.05 2.13 0.22 0.00
CBNB (USD) 2.59 1.72 0.28 1.55 0.08 0.02
CBNB (Euro) 3.98 2.23 0.05 3.02 0.57 0.01
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Figure 1. Actual and smoothed average forward differential (AFD)

The top panel in the figure plots the average forward differential (AFD) of the USD against the remaining
G-10 currencies, at the end of each month in the sample period 12/1984 to 11/2016 (multiplied by 100),
while the bottom panel plots the three-month moving average of the same series.
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Figure 2. AFD regimes, recessions and the Global financial cycle

The figure shows in light grey the periods when the AFD of the USD against the remaining G-10 currencies
is positive. In dark grey are shown the NBER recessions. Also plotted is the monthly time series of the
Global financial cycle factor as in Miranda-Agrippino and Rey (2017). We use the shorter version of the
factor, available over 1990-2012, spliced with the longer version over 1985-1989 and matching the values
at the first point of overlapping.
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